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FOREWORD

This report represents a summary of the work performed under
Contract NAS 9-3081 through 30 June 1965. A portion of the work
described herein has been previously submitted in a draft paper
titled ""Spacecraft Hull Thickness Requirements for Protection
Against Meteoroid Penetration", which was approved by NASA in
May 1965 for presentation as a technical paper.
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INTRODUCTION

The results presented inthis report represent an extension of the work in thin-

(1)

Specifically, the structure that has been investigated consists of a thin shield

shield impact published by two of the authors in an earlier AIAA paper.
(meteor bumper) spaced at a distance from the main hull of a spacecraft.

It is well established that the velocities of meteoroids relative to earth range
from 11 to 72 km/sec; however, meteoroid density, flux, composition, etc. are
2) Because of this general uncertainty in meteoroid
(3)

properties, NASA has published an Engineering Criteria Bulletin concerning

not known with certainty.

the meteoroid environment to be used for spacecraft design. This environment

is as follows:

(a) The isotropic flux-mass relationship for sporadic meteoroid is given by

LOglON =1,34 logm m-10, 423 (1)

where N is the number of impacts per square foot per day above

mass, m , in grams.
(b) The density of meteoroids is 0.5 gm,ém3 for all particle sizes.
(c) The average geocentric velocity is 30 km/sec for all particle sizes.
(d) The anisotropic flux during a shower is given by

LOglON =-1.34 log10 m-2. 68 log10 V-6. 465 + loglo F (2)

where V is the geocentric velocity of the meteoroid stream (km,/sec),
and F is the ratio of accumulative meteoroid stream flux to the

sporadic meteoroid flux.

The isotropic flux relationship (Equation 1) can be used to calculate the critical
meteoroid mass for various missions in space(z) (Figure 1). For example, the

Apollo service module with a surface area, A , of 51 square meters, a 0. 999
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probability of no puncture, P(0) , and a mission time, t , of 14 days has to be
protected against a meteoroid of mass 1. 48 x 10—3 grams)j This mass corresponds
to a meteoroid with a diameter of 1. 78 mm and a density of 0. 5 gm/cm3, or an
aluminum particle with a diameter of 1. 02 mm. Unfortunately, complete simula-

tion of meteoroids in the laboratory has not yet been achieved.

(4)

below 10 km/sec, and it is difficult to launch particles of meteoroid density even

Light-gas guns such as those used in the present study'™’ are limited to velocities
up to this velocity. For these reasons, the present study has been directed towards
understanding the physics of impact in order to permit confident extrapolation of
the results to extreme meteoroid velocities. In addition, the main emphasis has
been placed on determining the optimum (minimum weight) structure for meteoroid

protection,
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3.2mm STEEL SPHERE
7 KM/SEC
1.016 mm NICKEL SHIELD

FIGURE 2 X Ray of Thin Sheet Impact
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INTERACTION OF A HYPERVELOCITY PARTICLE WITH A THIN SHIELD

A flash X-ray of a particle-shield impact is shown in Figure 2. The physics of
such an interaction was described in Reference 1 and the conclusions obtained

can be summarized as follows:

(a) A shield is effective because it can fracture a hypervelocity particle,
spreading its fragments and reducing their velocity below that of the origi-
nal particle. If a shield is made too thin, its effectiveness at a given veloc-
ity is reduced because the spread of fragments is reduced, and fragment
velocities tend to approach the velocity of the original particle.

(b) During the impact process, each element of the projectile and the shield
is first shocked to some pressure and is then brought back to ambient
pressure by release waves. This cycle is nonisentropic, and as a result
the debris passing through the shield is heated. These heating effects are
important in determining the size of fragments in the bubble. If the final
debris is in the solid state, the size of fragments will decrease with
increasing temperature because of a decrease in fracture strength. If the
material is molten, only surface tension forces need to be overcome to
create droplets; these forces, and hence the droplet size, will become
smaller as the liquid becomes hotter. Finally, if the heating effects are
great enough, the debris becomes vapor.

(c) An optimum shield is thick enough that the axial element of the shock
(produced by the impact) reaching the back of a projectile is of sufficient
strength to cause eventual melting of this element. Calculated optimum
shield thicknesses as a function of impact velocity for aluminum projec-
tiles and shields are shown in Figure 3. Note that the theory only applies
at impact velocities above those necessary to cause melting. Alsoc note
that the optimum shield thickness decreases with increasing impact velocity.

(d) To a first approximation, shields of different materials but of equal weight
are equally effective,

(e) The effectiveness of a shield is independent of the strength of the shield
material at impact velocities above about 4 km/sec.



GM DEFENSE RESEARCH LABORATORIES ® GENERAL MOTORS CORPORATION

TR65-48

ST

a1110afoag pue pIdIYS WNUIWN]Y-SSAUKDIYL PloTYS wnwnido ¢ d9andig

(9es/wy) X LIDOTIA
6 L g

| 1 | |

(ONLLTAINW FLATINOD)
yvavoOAN 6 0 = d

¢°0

p
LdO S,

YILIWVIA ATILOF
SSANMOIHL ATIIHS NAWLLJO



GM DEFENSE RESEARCH LABORATORIES @ GENERAL MOTORS CORPORATION

TR65-48

INTERACTION OF DEBRIS WITH A SHIELDED TARGET

THEORY

Preliminary Experiments

A series of experiments were made to investigate the types of failure that can
result from the collective impact of debris on a shielded structure. In these
experiments the projectiles were 3. 2-mm aluminum spheres at 8.07 km/sec,

the shields were 1100-0 aluminum 0. 53-mm thick (near optimum, from Figure 3),
the spacing was 5.08 cm, and the backup sheets were 7075-T6 aluminum with
thicknesses 12.5, 9.6, 6.4, 3.2, 1.6 and 0. 8 mm. Results of the tests (Figure 4)
for the three thinnest sheets show that the 3. 2-mm backup sheet was not penetrated,
although a spall was almost detached; the 1. 6-mm sheet has a spall partially
detached and exhibits several tensile fractures; and the 0. 8-mm target was
completely perforated and shows the partial formation of several petals. A
Beckman-Whitley framing-camera sequence of this last impact (Figure 5) reveals
several interesting features. First, most of the damaging impulse does not occur
across the full diameter of the bubble but over a central area with a diameter
equal to about half the spacing, S . Second, this central area seems to be fairly
uniformly loaded, for a definite step deflection can be seen in the early frames.
Third, although a small spall detaches from the target, the main failure mode is
tensile failure around the circumference of the loaded area. (Note that failure is

not due to shearing as may first be supposed. )

The results above indicate that two failure mechanisms must be considered:

(a) Failure in tension due to the blast-loading effect of the debris impacting

the target. Petalling is an example of such a failure.

(b) Failure due to the formation of a spall.

Initial theoretical attention has been given to the first mode of failure.
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Theory of Failure of a Target Due to Gross Deformation

To treat this problem theoretically, such factors as the magnitude, distribution,
and duration of the load applied to the target must first be determined. Then the
large deformation dynamic response of the target has to be calculated, taking
into account the elastic and plastic behavior of the target.

Assumed Loading

The following assumptions have been made:

(a) The load is uniformly distributed over a circular area of diameter

equal to one-~half the spacing.

(b) The load is applied so quickly that the loaded area is effectively given

an initial velocity increment.

(¢) The momentum transferred to the loaded area is equal to twice the

momentum of the original particle.

Main justifications for assumptions (a) and (b) come from Figure 5, whereas a
momentum multiplication factor of two, assumption (c), has been chosen for the
following reasons: Since the impulsive load applied to a target increases with
increasing impact velocity, a spacecraft inner hull must be designed to resist

a meteoroid at the maximum expected velocity of 30 km/sec. At this velocity,

the majority of the debris coming through the shield will be in gaseous form.
Hence, if it is assumed that the momentum of the debris is equal to the momentum
of the original particle and perfectly elastic collisions occur between each gas

atom and the target, then the momentum multiplication factor should be two.

Large Dynamic Deformation Analysis

Given the loading, the next part of the problem is to determine the response of
the target (assumed to be a thin shell). However, the problem of determining
dynamic deformations and stresses in thin shells involves, in general, a complex
system of nonlinear differential equations. For these problems that involve both
large deflections and plasticity effects, a numerical technique has been developed

by Witmer, et al. (5) This technique is based on a finite difference approximation

10
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for the original differential equations. These finite difference equations are
then used to describe an equivalent lumped parameter model. For the time-
wise step-by-step numerical analysis, the increments in stress resultants and
stress couples are determined by idealizing the shell thickness as consisting of
n concentrated layers (six layers were used in all the present calculations).
Also, the material behavior used to determine the above increments can include
elastic-perfectly plastic, elastic-strain hardening, or elastic-strain-hardening

strain-rate-sensitive behavior.

The success of the above technique has been shown in a comparison of theory

and experiment for explosively loaded beams in Witmer's paper. (3)

The Strip Approximation

Figure 6 shows the situation that was first investigated to determine the motion
and stresses in the backup sheet. (6) In this approximation a strip (or beam) of
material through the center of the loaded area has been considered. The rear
sheet material has been taken as 7075-T6 aluminum. This material has been
assumed to behave in an elastic-perfectly plastic manner with a yield strength
% of 4.67 x 109 dynes/cm2 (70, 000 lb/in.z) and a percentage elongation to
fracture of 11 percent, The first step is to calculate the initial velocity vy
imparted to the central portion of the strip. From the previous assumptions,

this is given by

32M V
v.=—P P (3)
i SZ

™S ppt,

where Mp and Vp are the mass and velocity of the impacting particle;

S is the spacing, and Py and tb are the density and thickness of the backup
target. For the initial calculation, the following parameters were used: Mp =
mass of 3.2-mm aluminum sphere, Vp =7.63 km/sec, §=5.08cm, and

tb = 0.8 mm. Thus, this case corresponds to one of the preliminary experimental

results shown in Figure 4.

11
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The results of the calculation are shown in Figures 7(a) and 7(b). The centerline
deflection, the tensile strain at the edge of the loaded area, and the tensile
strain at the center of the load are shown in these figures. Figure 7(a) includes
the experimental curve of centerline deflection determined from the B&W photos
(Figure 5), indicating good agreement between theory and experiment. Note that
in Figure 7(b) the fracture strain is first reached at the edge of the loaded area
after about seven microseconds; after this time the solution is academic. There
is also some evidence of spalling in Figure 5, and such initial wave effects have

been ignored for the moment.

The above calculations were repeated for a backup sheet 1, 6-mm thick. The
results showed that the peak strain occurs at the center of the sheet, and that
the sheet should not fracture. Figure 4 shows that in practice only a small perfor-

ation occurs, and this is due to spallation.

The Effect of Span

With the above reasonable agreement between theory and experiment, it was
decided to use the strip approximation further. Because solutions are required

for an effectively infinite rear sheet, it was considered necessary to find out

how long a strip is effectively infinite for the time of interest in the present
problem. To do this, the first analysis (25. 4-cm span) was repeated for a 50. 8-cm
span, with the result that up to about 100 microseconds no difference was found

in centerline deflection, edge, or center strain for the two cases. Since in most
situations of interest either the maximum or fracture strain would occur in less
than 100 microseconds, it was decided that a 50. 8-cm span would correspond to

an effectively infinite sheet and would be used in all subsequent calculations.

Complete Results for Particles with a Diameter of 3.2 mm

The strip approximation was used to determine the response of backup sheets of
various thicknesses for impacts of 3. 2-mm particles at velocities of 7. 62, 15.2,
22.8, and 30.4 km/sec. The results at 7. 62 km/sec (Figures 8(a)—8(c) ) show that
there is a large difference between backup sheet thicknesses required for no-

yield failure (maximum strain less than 0.7%) and no-fracture (maximum strain

13
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less than 11%) failure. Also, it can be observed that for sheet thicknesses above
about 1. 6 mm the maximum strain occurs at the edge of the loaded area. Similar
solutions to Figure 8 have been obtained for the other three impact velocities.

The resulting curves of sheet thickness against impact velocity for failure criteria
of yield, maximum strain of 2%, 4%, and 6%, and fracture are presented in Figure
9(a). The surprising aspect of this figure is that for each failure criterion the
curve tb against velocity is nearly linear. This is surprising in view of the

fact that the basic mechanisms are nonlinear. It is also seen from this figure

that, above about 4% maximum strain at a given velocity, a small decrease in
thickness produces a large strain increment. Thus, it would appear wise to

design for no more than a few percent maximum strain.

The Effect of Particle Size

Figure 9(b) shows results similar to those of Figure 9(a) but for 1. 02-mm
diameter aluminum spheres. The same comments can be made concerning the
results for this particle that were made for the 3. 2-mm particle. Note that the
crowding of the constant maximum strain lines is seen to increase with decreas-

ing particle size.

From the above figures, the backup-sheet thicknesses for the yield and fracture
criteria can be plotted against particle diameter at a number of velocities. When
this is done it is found that, for either criterion, tb is approximately propor-
tional to the cube of the particle diameter. Thus, under these conditions, Equation

(3) indicates that Vi o the initial velocity of the loaded area, is roughly constant.

The Effect of Spacing

Spacings of 2.54, 5.08, and 10. 16 cm were investigated for the Apollo particle

(1. 02-mm diameter) at 30. 4 km/sec. The results for both the yield and fracture
criteria show that the sheet thickness necessary for either decreases approximately
with the inverse square of spacing. This result, plus those of the preceding sec-
tions, gives rise to an approximate equation for rear sheet thickness. For

7075-T6 aluminum this equation is given by

19
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where C =415+ 140 and 82 + 14 for the yield and fracture criteria, respectively,
t‘b is in millimeters, Mp is in grams, Vp is in km,sec, and S is in centi-
meters. ( Note: because the exact solutions do not require vy in Equation (3) to

be exactly constant, there is not a constant value for C at a specific maximum

strain.)

The Effect of Pre-Tensioning the Backup Sheet

In many space applications, the structure to be protected will be a pressurized
fuel tank; hence, it was decided to investigate the effect of pre-tensioning the
rear sheet (in one direction only). Since the computer code for the strip approxi-
mation can accommodate such pre-tensioning, solutions were obtained for a
1.02-mm particle at 30. 4 km/sec with pre-tensioning of 257, 50%, 75%, and
100% static yield stress. The centerline displacements against time are shown
in Figure 10(a), which gives evidence that pre-tensioning can significantly
decrease the deflection of the sheet. Also, the sheet thicknesses required for
both the yield and fracture criteria are shown in Figure 10(b) . These results
reveal that the thickness required for the yield criterion is not very sensitive to
pre-tension, whereas the thickness based on the fracture criterion is sensitive

to the amount of pre-tension.

Extensions of the Strip Approximation

The strip approximation has been shown to be in good agreement with experimental
results; however, the complete solution should consider a centrally loaded circular

(5)

plate. The numerical technique of Witmer, et al, has been applied to the plate
analysis and the results agree well with those from the strip approximation. Such

comparisons are shown in Figures 9(a) and 9(b).
Note also that either the strip approximation or complete plate analysis can be

used to analyze impacts in multi-sheet targets by summing the momentum in the

loaded segment of a sheet at the time fracture occurs around the circumference

22
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of the loaded area. This gives the momentum (reduced from twice the original
particle momentum) to be applied to the next sheet in the array. The analysis is

then continued until either a sheet is not perforated or the last sheet is reached.

INTERACTION OF DEBRIS WITH A SHIELDED TARGET —

EXPERIMENTAL

Experimental studies in support of the theoretical studies described above have
been performed with a light-gas gun at impact velocities up to eight kilometers
per second. This section describes some of the results of these experiments.

Appendix A presents the raw data from all the experiments performed to date.

Momentum Multiplication

Extensive experiments utilizing a ballistic pendulum(7)were carried out to measure
the momentum transfer to the second sheet as a function of impact parameters.
Initial experiments involved the measurement of momentum applied to the backup
while varying the bumper thickness and the impact velocity in aluminum-aluminum
impacts. The results of these experiments are summarized in Figure 11. The

thin bumpers (0. 305 mm, 0.635 mm and 1. 02 mm) gave very similar results.

The ratio of the measured momentum applied to the backup sheet divided by the
incident momentum increased with velocity up to about 5 kilometers per second,
then remained constant throughout the rest of the experimental range. The thicker
shield, 1.6 mm, exhibited a continued increase in the momentum multiplication
ratio throughout the experimental range. Since it has been argued that the momentum
multiplication ratio for the thin-sheet impact case has an upper bound of 2.0 and

(7)

multiplication ratio should show an increase for the thicker targets.

semi-infinite impact has no upper bound' ’ it is to be expected that the momentum

The momentum multiplication values presented in Figure 11 cover the range of
solid debris impact through completely melted debris. There appears to be no
sharp change in behavior in this transition, with perhaps the exception of a

change of slope at about 5 kilometers per second corresponding to the onset of

melting in aluminum-aluminum impact,
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As a test of the effect of spacing upon the momentum multiplication ratio,
experiments were conducted with spacings less than the 5. 08-centimeter spacing
of the previously described experiments., The values obtained in these experi-
ments were identical, within the + 4% error of the measurements, to the values

obtained with the 5. 08-centimeter spacing (Table I).

Table I
EFFECT OF SPACING
Shield Impact Momentum
Shot No. Thickness Velocity Spacing Multiplication
(mm) {cm)
D-1225 1.02 5.88 2.54 1. 32
9996 6. 46 1.27 1. 30
1351 7. 47 1. 27 1.33
1352 0. 64 7.07 1.27 1. 35

3.18-mm Aluminum Spheres Impacting 1100-0 Aluminum Shields

On the basis of these experiments it is concluded that spacing has no effect on

momentum transfer.

The value of the momentum multiplication factor attained for the aluminum-
aluminum thin-sheet impact case was much less in the case of the three thinnest
shields than the value of 2.0 postulated as the upper bound. The aluminum-
aluminum impact represented a liquiddebris impact and it was felt that perhaps
the impact of vapor debris would more closely approach the value of 2.0. Experi-
ments were performed with cadmium projectiles and shields in which the debris
striking the backup sheet was in vapor form. The results of these experiments
are shown in Table II. As can be seen, the values attained are again much less
than 2. 0.

The experiments performed with 0. 64-mm shields represented a transition from
liquid debris striking the backup (the test at 3. 18 kilometers per second) to
vapor debris. The value of the momentum multiplication ratio reached a value

of 1. 4 at 5. 38 kilometers per second and remained unchanged throughout the
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experimental range. The experiments performed with the 0. 33-mm shields
covered the transition from solid debris to liquid debris. Again the highest value

attained is far less than 2.0.

Table II
CADMIUM-CADMIUM IMPACTS
Shield Impact Momentum
Shot No. Thickness Velocity Multiplication
{mm) (km/sec)

D-1046 0.64 3.18 1.21
1324 5.38 1. 41
1327 5.76 1.38
1045 6. 40 1. 42
1454 6. 40 1.39
1230 0.33 3. 60 1. 26
1463 5.18 1.28
1018 5. 61 1.34

3. 18-mm Cadmium Spheres

The attainment of values for the momentum multiplication ratio of less than
2.0 can be accounted for by a probable lack of perfectly elastic vapor impact
with the backup sheet and the spread of the debris before striking the backup

sheet, resulting in non-normal impacts.

LOW DENSITY PROJECTILES: Two sets of experiments were performed using
low density materials for projectiles. The first series was performed using

Inlyte as the projectile material. This is composed of very small glass spheres
held together in a plastic matrix. The projectiles used had a bulk density of 0. 7
grams per cubic centimeter. The values of the momentum multiplication factors
obtained for impacts against aluminum shields (Table IM) are in agreement with
those obtained for aluminum-aluminum impacts. An examination of the backup
sheet shows that the damage was due to shield fragments and there was no evidence

of melting of the aluminum.

The second set of momentum-transfer experiments with low-density projectiles

was performed using nylon as the projectile material. The nylon had a density of
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1. 15 grams per cubic centimeter. In contrast to the momentum multiplication
factors obtained using Inlyte as the projectile material, the momentum multipli-
cation was quite high (Table II). Thedamage suffered by the backup was very
similar to that obtained with the Inlyte projectiles, with a great number of small
craters apparently caused by shield fragments. With the nylon, as with the Inlyte,
there was no evidence of melted aluminum on the backup target. Because there

is no apparent difference in the damage to the backup sheets it must be concluded
that the difference in the values of the measured momentum transfer must be due

to differing projectile properties.

Table III
LOW-DENSITY IMPACTS
Shield Impact Momentum
Shot No. Projectile Thickness Velocity Multiplication
(mm) (km/sec)
D-1391 4, 90-mm Inlyte 0. 64 4.69 1.20
1394 0. 64 7.91 1. 24
1393 0. 305 4. 68 1.25
1349 4. 19-mm Nylon 1.02 6.31 1.55
1371 ‘ 1.02 7.13 1.50

Shields 1100-0 Aluminum, 5.08-cm spacing, 7075-T6 Aluminum Backups

DISTRIBUTION OF MOMENTUM: A double ballistic-pendultmarrangement was
used to measure the distribution of momentum applied to a shielded target. The
experimental arrangement was such that the momentum felt by a variable-size
central circular area of the target was measured by one pendulum, and the
momentum applied outside this central area was measured by another pendulum.
In this study the projectiles were 3. 2-mm aluminum spheres at 7.3 km/sec, the

shields were 0. 64-mm1100-0 aluminum, and the spacing was 5.08 cm.

The results of the tests are shown in Figure 12. It is seen that the assumed
distribution and experiment differ, hence it was decided to investigate the sensi-
tivity of the rear-sheet analysis to momentum distribution. This was done by

calculating the rear-sheet thickness necessary for the experimental conditions
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Figure 12 Momentum Distribution
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relevant to Figure 12, and for the measured momentum distribution. The results
of the analysis, presented in Figure 9(a), indicate that the predicted thicknesses

are not radically altered by the changes in momentum distribution.

Also shown in Figure 12 is the distribution obtained with cadmium-cadmium
impacts. The distribution of the cadmium momentum is less peaked than the
aluminum-aluminum distribution. The aluminum debris was in molten form

while the cadmium debris was vaporized, and this may account for the flatter
cadmium distribution. (It should be noted that the cadmium projectiles had a

mass of 0. 145 grams while the aluminum projectiles had a mass of 0.047 grams;
thus the cadmium momentum and momentum density is greater than the aluminum.

The portion of the momentum near the center is less for the cadmium. )

Multi-Sheet Structures

The question of the effectiveness of single versus multiple backup sheets was
approached by approximating the failure of the backup sheet with the strip
approximation. When fracture occurs in any of the 3ix layers of the strip, the
momentum of the broken segment of the strip is summed. The result of this
procedure is shown in Figure 13. The results indicate that the use of multiple
sheets offers little or no advantage over single backup sheets, as there is no
significant decrease in the momentum through the second sheet until it has a

thickness of approximately 90% of the fracture thickness.

A series of experiments was conducted to test the validity of this approach. The
first three experiments utilized the ballistic pendulum behind various thicknesses
of second sheet to attempt to measure the momentum delivered through the second

sheet. The results of these tests are summarized in Table 1V.
The poor agreement between the experiments and the predictions is due in part

to spall from the second sheet and also to the momentum multiplication in the

catch material on the ballistic pendulum.

31



GM DEFENSE RESEARCH LABORATORIES ® GENERAL MOTORS CORPORATION

TR65-48

001

ssauyo1y] dnydoeyg SA wWmUsWON Jututewsy g] 4ndig

09

SSHANMOIHL JUNLOVHL LNJIDHHEd

Vi 02

|

0as/wy g9 L
dNAOVd TV 9L-GLOL
HNIDVJS WD 80 °G
FUIHJS TV WW g °¢

— %0

—8°0

NNALNIWON TVYNIDIHO
NNLNIWONW DNINIVINIH

32



GM DEFENSE RESEARCH LABORATORIES @ GENERAL MOTORS CORPORATION

TR65-48
Table IV
MOMENTUM THROUGH BACKUP

Shot Number D-1437 1400 1442
Velocity 8.05 km/sec | 7.60 7.50
% of Fracture Thickness 32 50 100
Momentum Through

Backup (Actual) 1. 38 0. 65 0. 47
Momentum Through

Backup (Predicted) 0. 99 0. 95 0
All tests 3. 18-mm aluminum spheres, 5.08-cm spacing,
7075-T6 aluminum backups.

A series of experiments was then undertaken with actual spaced multiple sheets.
The first test was against a double-sheet structure, bumper and backup (see
Table V). The damage in this case was minor fracture and spall. This structure
corresponds to the fracture case calculated with the plate approximation and
measured momentum distribution shown in Figure 9(b). The second test was
conducted against a three-sheet structure (see Table IV). The damage in this
case consisted of complete fracture failure of the second sheet, but only yield to
the third sheet. The last test consisted of an impact against a four-sheet struc-
ture, again of the same areal density as the double-sheet structure. In this
instance the second sheet again suffered a complete fracture failure and in this
case the third sheet was perforated by what appeared to be fragments of the
second sheet. The fourth sheet was essentially undamaged.

Table V
MULTI-SHEET IMPACTS
Shot No. D-1442 D-1449 D-1450
Velocity 7.50 knmysec | 8. 14kmysec | 7.93kmysec
First Sheet 0. 64 mm 0. 64 mm 0.64 mm
Spacing 5.08 cm 5.08 cm 5.08 cm
Second Sheet 1.27 mm 0.64 mm 0.41 mm
Spacing -- 5.08 cm 5.08 cm
Third Sheet -- 0.64 mm 0.41 mm
Spacing -- -- 5.08 cm
Fourth Sheet -- -- 0.41 mm
Last Sheet Perforated Second Second Third
3.18-mm Aluminum Spheres
All First Sheets: 1100-0 Al  All Other Sheets: 7075-T6 Al
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On the basis of the two sets of experiments, it was felt that the strip approxima-
tion was not adequate. The analysis is presently being modified such that fracture
must occur in all six layers before the momentum is summed. Also, the impact
of sheets after the second does not appear to be a blast-loading phenomenon but

a fragment-impact process. The description of the momentum through the second

sheet may not provide a complete description of damage to the following sheets.

Fillers

Preliminary experiments have been made on the effectiveness of filler materials
upon reduction of damage in bumper-protected structures. Experiments were
originally conducted with the ballistic pendulum to determine the momentum
transfer through the foam material, in this case styrofoam. The ballistic pendu-
lum record indicated that the momentum transfer was very large to the second

sheet and, in fact, exceeded the capacity of the pendulum.

An experiment was performed in which the foam material was placed between
the first and second sheet and the second sheet thickness made such that the
areal density would match that of test number D-1441 (see Table V). The impact
of this target with a 3. 18-mm aluminum sphere at 7. 56 kilometers per second
resulted in the removal of all the filler material from between the bumper and
backup and severe deformation of both the backup and the bumper. The structure
was not perforated. For these particular test conditions, this particular filler
provides more protection than the bumper-backup combination of the same
weight. The foam used was a closed-cell foam and this construction may contri-
bute to the deformation of the shield and backup through shock transmission.
Further experiments will be performed to evaluate the usefulness of foams,

investigating the effects of open and closed cells, density and foam composition.

Experimental Check of Predictions for a 1.02-mm
Aluminum Particle at 30. 4 km/sec

Several experiments were conducted to check the validity of the calculation shown
in Figure 8(c) for a particle with a diameter of 1.02 mm (Apollo) at 30. 4 km/sec.

The momentum of this particle at 30. 4 km/sec is nearly the same as a particle
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with a diameter of 1.6 mm at 7.8 km/sec. Assuming the momentum multiplica-
tion factor to be the same at both velocities, a 1. 6-mm-diameter particle at

7.8 km/sec can simulate the backup sheet loading from the Apollo particle at

30. 4 km/sec. For this reason tests have been conducted with 1. 6-mm aluminum
particles at 7.8 km/sec, spacing of 5.08 cm, 0.31-mm shields of 1100-0 aluminum
(near optimum), and 7075-T6 aluminum backup sheets, 0.41, 0. 82, and 1. 64-mm
thick. Photographs of the two thinnest backup sheets (Figure 14) show that neither
failed due to impact. This is consistent with the results of Figure 9(b), where it

is predicted that a 1. 02-mm aluminum projectile should not fracture such sheets

at 30.4 km/sec. Also consistent with the predictions of Figure 9(b) is the lack of

any deformation of the 1. 64-mm backup sheet (not shown in Figure 14).
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DISCUSSION

SPALLING

As mentioned earlier in this report, the impulsive load applied to a shielded target
can cause spallation as well as gross deformation. The study of spallation has
only recently commenced at GM DRL; however, some preliminary results are
worth reporting. These results have been obtained by idealizing the impulsive

load applied to the rear sheet, and then using a one-dimensional elastic-plastic
wave analysis (GM DRL computer program MATERIALS I).

The spall-producing load applied to a shielded target has been approximated by
the plate impact illustrated in the upper right-hand corner of Figure 15. The
assumed plate impacts at the projectile velocity VO , has a diameter of S/2 ,
and has the same mass and density as the impacting projectile. In addition, the
plate material is assumed to behave as a fluid. The above assumptions seem

reasonable in view of the following facts:

(a) X-rays from Reference 1 show that the majority of debris passing
through a thin shield is near the front of the bubble and travels at
approximately the impact velocity.

(b) At high velocity the debris is expected to have negligible strength (and

behave as a fluid) due to shock-heating effects.

(c) Earlier results have shown that a spread of S/2 for the loading is

reasonable.

Details of the stress waves produced in the rear sheet due to the above one-
dimensional impact can be obtained from the GM DRL MATERIALS I code. This
code has been obtained by writing the one-dimensional field equations, together

with the constitutive equation, in finite difference form. (8,9)

The constitutive equation for the elastic-perfectly plastic material subject to

large compressions is based on the following assumptions:
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(a) The stretching can be expressed as the sum of elastic and plastic

components.

(b) The spherical stretching follows the hydrodynamic equation of state
and is entirely recoverable.

(c) The deviatoric stressesare subject to the Von Mises yield criterion.

Note that, in the analysis, only the flow in the rear sheet includes strength effects,

whereas the flow in the impacting plate is assumed to be purely hydrodynamic.

To investigate the above analysis, computer calculations were performed to
compare with the experimental conditions pertinent to Figure 4. The predicted
plot of maximum pressure against distance into the target plate is shown in
Figure 15. For a spalling stress of 13.5kbar,(10)and taking intoaccount the shape
of the wave in the target, incipient spall is predicted in a target approximately
1-cm thick. This prediction is in good agreement with experimental results
which show that a 0. 96-cm-thick target just spalls, whereas a 1. 27-cm target
does not spall. Note also that a comparison of the results of Figures 4 and 15
indicates that a peak pressure of about 100 kbar is necessary for complete spall

detachment.

The above good agreement between theory and experiment is considered to justify
application of the technique to the case of 1.02-mm Apollo particle impacting a

shielded structure.

LOW-VELOCITY IMPACT

The predictions of rear-sheet thickness made earlier in this paper have assumed
that the debris passing through the bumper essentially blast-loads the rear sheet.
This assumption is only valid at high velocities where the debris consists of very
small particles. For an aluminum projectile impacting an aluminum shield it is
safe to say that this condition is achieved when the debris contains some molten
debris, i.e., above 7T km/sec. At lower velocities than this, incomplete frag-
mentation of the projectile occurs and the large fragments passing through the
bumper can inflict substantial damage on the rear sheet.
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To further investigate this effect, several tests were conducted using 3. 2-mm
aluminum projectiles, 0.64-mm (near optimum) shields of 1100-0 aluminum,
5.08-cm spacings, velocities from zero to 6.5 km/sec, and 7075-T6 backup
sheets of various thicknesses. From these tests the rear-sheet thicknesses
necessary to prevent spall detachment at various velocities were estahlished,
and the results are presented in Figure 16 (also in Figure 9(a) ). It is seen that
the thickness necessary rises to a peak at about 2. 5 km/sec and then decreases
as greater fragmentation of the projectile occurs. Note that the thickness neces-
sary to stop such a particle at 2. 5 km/sec is sufficient to stop the same particle
at all velocities up to about 20 km/sec. Note also that the maximum penetration
in Figure 16 is expected to be essentially independent of spacing, and scales

approximately with projectile diameter.

NON-OPTIMUM SHIELDS

The previous section has pointed out that the assumption of blast loading of the
backup sheet is invalid at low velocities. It is also invalid at high velocities if
the shield is less, or significantly greater, than the optimum thickness given by
Figure 3. In both cases the fragments impacting the backup sheet can be large

and may cause significant cratering.

The non-optimum shield situation was experimentally investigated using 3. 2-mm
aluminum projectiles, 5.08-cm spacing, a velocity of 7.5 km/sec, and various
thickness shields and backups of 7075-T6 aluminum. The damage inflicted upon

1. 6-mm-thick backup targets in these tests is shown in Figures 17(a) and 17(b).
The results of all the tests can be conveniently summarized in the solid line
construction of Figure 17(c). Straight lines have been drawn between known

points A, B,and C, where tA (thickness at point A) corresponds to the thickness

of rear sheet necessary to prevent spall detachment with no shield; tB (thickness
at point B) is the total thickness of structure to give 4% maximum strain (from
Figure 9(a)) at optimum shield thickness of ts/d =0.15, and tc =ty is the thick-
ness of shield necessary to prevent spall detachment and thus require no backup
sheet. The experimental results indicate that, for design purposes, if the structure
is designed above ABC then no perforation of the rear sheet will occur. Note that,
at a given velocity, thickness tA =tC scales approximately as particle diameter d ,

whereas tB scales as d
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CONCLUSIONS

The large dynamic deformation analysis used to predict backup-sheet thicknesses
has been found to give answers that are in good agreement with experimental
results. In addition, preliminary predictions of spallation damage to a backup
sheet seem to have validity. The greatest uncertainty in both the above analyses

is in the assumed loading applied to the backup sheet.

The interest in Project Apollo makes it pertinent to summarize the conclusions
regarding the optimum shielding requirements for this mission. The critical
meteoroid mass was shown earlier to be the same as that of a 1. 02-mm-diameter
aluminum sphere, and Figure 3 shows that for this particle a 0. 20-mm aluminum
shield (ts/d = 0.19) will be adequate at velocities above 7 km/sec. Figure 9(b)
shows also that, for a spacing of 5.08 cm and a velocity of 30 km/sec, a 1. 20-mm-
thick backup sheet of 7075-T6 aluminum is not expected to yield. The final design
check is to see if the above structure will resist perforation at velocities below

7 km/sec. This is determined from Figure 1'6, where it is seen that a maximum
backup thickness of 1. 30 mm (tb/d = 1. 25) is required at a velocity of 3 km/sec.
Thus, for this particular mission the necessary thickness of total structure is

1.50 mm,

A final point of interest is that even though the optimum structural requirements
of Apollo for meteoroid protection are modest, this will not always be the case.
For example, Figure 3 shows that for a Mars mission, with the same vulnerable
area and puncture probability as Apollo, the structure must be protected against
a 0. 125-gm meteoroid. Eqﬁation (3) shows that the backup-sheet thickness must
be 170 times that required for Apollo. Of course, Equation (3) also shows that the

way to decrease this weight is to increase the spacing.
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